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J .  Phys. A: Math. Gen. 24 (1991) 2977-2993. Printed in the UK 

Bifurcation in the Friedberg-Lee model 

Received 3 December 1990 

Abstract. We investigate solutions of the Friedberg-Lee model in which the soliton bag is 
defined on a small domain determined by a radius R. Such solutions arise when the nucleon 
is modelled as a soliton bag and, when compressed within the nucleus, is confined to a 
domain of the order of the soliton size itself. By means of linear analysis we show that at 
a certain value of R the soliton solutions bifurcate from constant solutions. This enables 
us to determine solution branches for small R, and the vducs of R for which the soliton 
bag has lower energy than that of the constant solution. The discontinuity where the 
branches cross can be viewed in the quantum theory as a transition from a nucleon state 
lo a uniform plasma. We also find multi-soliton solutions and kink solitons which bifurcate 
from a different constant solution. We describe a numerical method which allows us to 
follow solutions from the bifurcation radius as R is varied and we apply the method to 
obtain numerical solutions for small R. 

1. Introduction 
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states not presently calculable directly from QCD. A recent account of work carried 
out on such models has been provided by Wilets [l]. In the Friedberg-Lee model 
[2,3], the simplest of the non-topological models, there is only one scalar field U, 
identified with the gluon condensate, which interacts with quark fields +. The model 
is solved in the mean field approximation, in which U becomes a static classical field 
9nA the m n r k  f i d A c  ,I, I ~ P  e r n . n A d  in t w m c  nf II mmnlote E P ~  nf ~ n i n n r  h2.i. finn,-+inn. 

with fermion operator coefficients. The quantum field equations are in this way reduced 
to a system of nonlinear partial differential equations, with boundary conditions 
determined by the requirements of finite energy. From the solutions baryon wavefunc- 
tions can be constructed and quantities of physical interest, such as the mass and 
charge radius of the nucleon, can be calculated. Higher order corrections and other 
modifications are described by Wilets [ 11. Although the Friedberg-Lee model does 
not provide a realistic description of nuclear matter, since for example it lacks chiral 
symmetry, the techniques we use here to investigate nucleon behaviour within this 
model are general, and will be applicable to more realistic models, such as the 
chromo-dielectric model described by Wilets [ 1). 

Given the model of individual nucleons as solitons one would like to model the 
nucleus by assembling many solitons together, perhaps in a lattice configuration, to 
form the nucleus. Since the solitons could overlap it is necessary to modify the boundary 
conditions from the single soliton case to ensure that adjacent solitons join smoothly. 
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In this context, the solitons will exist on a small domain of the order of the soliton 
size itself, and we are therefore led to investigate their properties on a small domain 
determined by a radius R which is allowed to vary. In the Wigner-Seitz approximation 
each soliton occupies a cell equivalent in volume to a sphere of radius R and is assumed 
to be spherically symmetric. As R becomes very small the soliton is compressed and 
begins to lose its soliton identity; in fact at a certain radius we show that it reduces 
to the constant solution, which in the quantum theory corresponds to a uniform plasma 
of fermion and scalar fields. By investigating the effect on the soliton of varying R we 
expect therefore to obtain information on the nature of the transition from the nucleon 
to the plasma state. 

The fact that the quantum field equations are reduced to a system of coupled 
ordinary differential equations means that well established techniques can be applied 
to analyse and solve these equations, and determine qualitative behaviour which might 
he common to a range of models. In particular, we apply bifurcation analysis to the 
Friedberg-Lee modei to investigate the dependence of the soiution on R. For smaii I? 
the soliton solution does not exist, but at a certain value R, the soliton bag bifurcates 
from a constant solution, and for large R has lower energy and so is the preferred 
state. The existence of the bifurcation is detected by linear analysis of the nonlinear 
field equations, and we use a numerical method 141 which enables us to follow the 
soliton branch as R is vaned. We investigate here the case in which the fermions are 
all placed in the ground state, so our analysis only applies directly for solitons in the 
zero temperature limit. However, we expect that similar bifurcation behaviour will 
exist for the general case in which the lowest levels of the fermion band are filled. 
This is demonstrated in [ 5 ]  for the one-dimensional version of the Friedberg-Lee 
model, by finding an exact solution which is valid for an arbitrary packing of the 
fermion band and for an arbitrary number of cells. Provided the top level of the band 
is uniiiied the bifurcaiion proceeds in the same way as for ihe case in which oniy iiie 
lowest level is occupied. 

The first step in analysing the bifurcation behaviour is to classify all constant 
solutions, and this is done in section 3. The two classes of solution lead to two soliton 
types, the soliton bag and kink solitons which resemble the kinks of one-dimensional 
models. By linearizing about the constant solutions we find necessary conditions for 
the existence of bifurcating branches. Bifurcation can occur only for certain values of 
R which are determined algebraically, and the quark eigenvalue and total field energy 
are also determined exactly, as shown in section 3. The soliton bag bifurcates from a 
constant solution which in the quantum theory can be viewed as a uniform fermion- 
scalar field plasma. In section 4 we analyse the case of solutions bifurcating from a 
different constant solution, one which in the quantum theory corresponds to an unstable 
vacuum for the scaiar fieid sector, in  section 5 we present a numericai meihod for 
finding solutions to the full nonlinear equations by following a solution branch from 
its bifurcation point, and apply the method to find actual solutions near the bifurcation 
point, keeping fixed the quark eigenvalue. It remains to carry out a thorough numerical 
investigation keeping the physical parameters of the model fixed. 

It is instructive to examine the bifurcation behaviour in a simple soliton model and 
so in section 2 we demonstrate that sine-Gordon solitons bifurcate from the constant 
solution as the domain [-R, RI is increased. For this model, and that with a quartic 
potential, exact solutions can be found and their behaviour analysed explicitly; however 
the solutions are relevant only classically, since the solitons join only to anti-solitons 
and so will annihilate quantum mechanically. The property of bifurcation as R is 
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varied is common to other soliton models, including topological solitons such as 
vortices and magnetic monopoles. 

2. One-dimensional models 

In one space dimension, a well-studied class of soliton models has properties 
determined by the equation (for the static case) 

where U ( U )  is a suitable potential, and ‘=d/dx. We wish to assemble static solitons 
together on the line and so an individual soliton is defined on the interval [-R, RI  
for some finite R, and we impose the boundary conditions 

(2.2) U‘( R) = 0 = u’(-R) 

which ensure that adjacent solitons join smoothly. For the case of a single soliton 
located at the origin, U is odd in x, ~ ( x )  = - u ( - x ) ,  and then we need solve (2.1) only 
on [O, RI with the boundary conditions d(R)=O=u(O) .  In order to exhibit the 
dependence of the solution on R, define s = x/R, so that for the sine-Gordon model, 
for which U(U) =cos U, 

6 =  -R2sin U (2.3) 
with +I)  = 0 = U(1). where U = du/ds.  The behaviour of the solution as R is varied 
is well known from the studies of the elastica, the model for a beam buckling under 
compression considered by Euler and Bernoulli. A description is provided by Reiss 
in 16, p71, also by Chow and Hale [7, p 51. In the classical problem an elastic rod of 
certain length is subject to a compressive force which eventually buckles the rod. The 
unknown U is the angle which the unit tangent vector to the rod makes under buckling, 
and the variable s is the arclength along the rod. This buckling can be viewed as a 
bifurcation of a non-trivial solution from the trivial solution u=O of (2.3) as the 
bifurcation parameter, the applied force, is increased. In our problem ‘compression’ 
means reducing R in (2.3), whereas in the Euler-Bernoulli problem it means increasing 
the coefficient on the right-hand side of (2.31, which is proportional to the applied force. 

The picture we obtain, in terms of solitons, is that for small R only the trivial 
solution of (2.3) U = 0 exists but when R is increased to a certain value R = R,, a 
soliton bifurcates from U = 0 and in the limit R + m becomes the familiar one-soliton 
solution of the sine-Gordon equation. There are also bifurcation points for larger 
values of R, R = R. for n = 2 , 3 , .  . . , which describe n-soliton solutions, and which 
also bifurcate from the trivial solution U = 0. These solutions can be viewed as n single 
solitons located next to each other on the real line. 

This behaviour can be precisely described by integrating (2.3), with the solutions 
appearing as elliptic functions. Since details appear in [6] let us instead write out the 
solution for the quartic potential 

u(U)=f(l-U2)*. (2.4) 

(There is similar behaviour for any potential which admits soliton solutions.) One 
integration of (2.1) gives 

i(u’)2= U ( u ) -  U ( U R )  (2.5) 
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where uR = u(R). A further integration using (2.4) gives 

u(x)  = uR s n ( x m ,  k )  (2.6) 

where k = u R / G  with 0 s  k < 1 and sn(u, k )  is the Jacobian elliptic function. (See 
Abramowitz and Stegun 181 for a definition and properties.) Next we impose u(R) = uR, 
to obtain 

R m =  (2n - 1 ) K ( k )  (2.7) 

where K is the complete elliptic integral of the first kind and n is an integer. Here we 
have used the fact that sn(u, k )  = 1 at U = K ( k ) ,  5 K ( k ) .  . . and we can also include 
the cases U = 3 K ( k ) ,  7 K ( k ) .  . . since these also describe multi-kink solutions, odd in 
x. Given R, (2.7) determines uR, with 0 s  uR < 1 and then u ( x )  is given by (2.6). For 
R +  m we regain the familiar kink solution u ( x )  = tanh(x). 

The bifurcation property is visible in the solution when we consider the properties 
of K ( k ) ,  for the minimum value of K ( k )  is rr/2 at k = O ,  when uR=O. Hence, for 
n = 1 in (2.7) the minimum value R ,  of R is given by R ,  = 7r/2a and for smaller 
values of R the soliton does not exist except as the constant solution U = 0. At the 
values R = R, = nR,, n = 1,2, .  . . , there are further bifurcations from U = 0 which 
represent multi-solitons and have n times the energy of a single soliton. 

Although a complete description is possible in terms of elliptic functions, including 
the calculation of the energy, we can detect the presence of the bifurcation in a more 
general way by linear analysis. To do this we must investigate perturbations about the 
constant solution w = O  and therefore solve the linearized equation U"= -2u with 
u(0) = 0. The solution is 

u ( x )  = s i n ( d x )  (2.8) 

and U'( R )  = 0 implies 

7r &R =(2n -1)- ( n  integer). 
2 (2.9) 

This shows that a non-trivial solution can bifurcate from U = 0 only for the values of 
R given in (2.9) and accords with R I  as above. The linearized solution (2.8) also 
appears correctly as the limit of the general solution (2.6). 

This outline indicates how to proceed in the general case when an  exact solution 
is not available, and provides a simple but useful example of how bifurcation occurs 
in soliton models. 

3. Friedberg-Lee model 

The Friedberg-Lee model (in three space dimensions) is given by the Lagrangian 

2= $(iy. a-gu)Jl+fa,uJ'u- U ( u )  (3 .1)  

where U(u) is the self-energy density of the U field and g is a coupling constant. We 
can choose 

a b c  
2 6 24 

U(U) = B +- U'+- U'+-- u4 (3 .2)  
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where a, b, c and B are constants and B =  U(0) is the bag constant. The absolute 
minimum of U ( u )  occurs at U =  U" where 

(3.3) 

Following Birse et a1 [9] we adopt the Wigner-Seitz approximation, in which the 
soliton is spherically symmetric and is defined in a sphere of radius R. The field 
equations reduce to 

du 
dr  
_-  - - ( E  + g u ) u  

du 20 
r 

- dr+-= (& - g u ) u  (3.4) 

d2u  2 d u  
dr2 r d r  
-+- = gN( U 2  - UZ) + U'(  U) 

where N is the number of valence quarks, which we set to three, and the fermion 
fields are normalized according to 

4 ~ ~ ~ ~ ( u ' + u ~ ) r ~ d r =  1. (3.5) 

As in [4] and [lo], it is convenient to rescale these equations by putting 

U E 
r + rgu" U + -  &+--- 

U" W" 

and we also put 

b a / =  

The (rescaled) potential is now 

C 
m . 4 - 2 -  " - 2 2 '  

s=- 
24g2 L*8 U" -8 W Y  

U(U) = (U- 1) ' (su~+2/u+ 1 ) .  

The equations we wish to solve take the form 

du 
dr  
_-  - - ( & + u ) u  

du 2u 
dr  r 
- + - = ( E  - u ) u  

with the normalization 

(3.6) 

(3.9) 

joR (u2+u2)r2 dr=--. Ng 
4T 

(3.10) 
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The boundary conditions are 

u ’ ( O ) = O = u ’ ( R )  

u(0)  = 0 =  u ( R )  
(3.11) 

where we could also have U( R )  = 0 instead of U( R )  = 0 in order to describe quarks at 
the top of the band. 

In order to investigate bifurcation behaviour we must first classify all constant 
solutions of (3.9), of which there are essentially two possibilities: 

U = &  o = o  U 2 = - u ’ ( & )  (3.12a) 

or 

u = o = v  U’( U )  = 0. (3.126) 

We consider the soliton bag solution, which bifurcates from (3.12a) first. As before, 
it is convenient to define s = . x / R  and solve the following equations on [0,1]: 

U = - R ( E  + u ) u  

2u 
U+-= S R ( E  - u ) u  

u = 7  

(3.13) 

27 
i+-= R ~ (  U’ - U * )  + R~ U ~ U )  

S 

where we have written the equations in first-order form by defining the unknown T = U. 

Let us denote by z the vector 

Z f ) .  

The constant solution is 

The boundary conditions (3.11) may be written 

Pz(0) = a =  Pz(1) 

where the projection matrix P is given by 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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We wish to perturb about zo, and so we substitute z(s) = q,+y(s), and write (3.13) in 
the form 

2P 
Y+-y = A y +  O(lyl’). (3.18) 

The matrix A is given by A, = JjJ(zo) ,  wheref is the vector function on the right-hand 
side of (3.13), and we find 

S 

I 0  ER 0 O\ 

0 - R m O  
‘=[2R2& 0 0 0 

(3.19) 

The solution of the equations y+ZPy/s  =Ay is 

y ( s )  = [ (As) - ’ -P (As) - ’ ]  eA“y(0) (3.20) 

which can be verified by use of the property 

A P + P A = A .  (3.21) 

A consequence of this equation is 

P f ( A )  = f ( - A ) P + t [ f ( A )  - f ( -A) l  (3.22) 

In order to evaluate the exponential in (3.20) we need to calculate the eigenvalues 

A4-A2R2U”(&)  + ~ E R ~ U ’ ( E )  0 (3.23) 

for any suitable function f: 

and eigenvectors of A. The eigenvalues A are determined by the quartic equation 

and hence the eigenvalues come in pairs, A =*a, kip, (a, p > 0), where 

R2 

R2 

a2=- ( U”(E)+JU”(E)~ -  I ~ E U ’ ( E ) )  (3 .24a)  
2 

p 2 = ~  ( -U”(  E ) + J U “ ( E ) ~  - I ~ E U ’ ( E ) ) ,  (3.246) 

(LI and p are positive and real provided E > 0 and U’( E )  < 0. For each eigenvalue A 
there is a corresponding eigenvector & given by 

(3.25) 

Of interest is the combination & + g-, since it satisfies P( 6 + [ - A )  = 0: 

(3.26) 
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The initial and final values y ( 0 )  and y(1) are therefore each a linear combination of 
&,+&= and tiiP + 

(3.27) 

in particular 

y ( 0 )  = C l ( &  + L . ) + c , ( R p  + k i B ) .  

We must also impose Py( 1) = 0 and since (from (3.20)) 

~( l )= (A- ' -A-~s inhA)y(O)  (3.28) 

we find 

O=Py( l )=(A- 'co~hA-A-~s inhA)y(O)  (3.29) 

or 

(A-tanh A)y(O) = 0. (3.30) 

On substituting for y(0 )  from (3.27) we find that c,=O,  since we cannot satisfy 
U = tanh U non-trivially, and p must satisfy tan p = p. This equation has an infinite 
number of solutions, p I  = 4.4934,. , , , p,=7.725,. . . , and an approximate solution, 
valid for large integers n, is 

1 
p. = (n+f)n--. (3.31) 

(n+t)7r 

For each such p. there is a corresponding radius R. determined from (3.246). 
We have obtained, therefore, a necessary condition for the existence of solutions 

bifurcating from the constant solution (3.1261, i.e. the bifurcation takes place only 
when the radius R attains one of the values R,  and in this case the linearized solution 
is given by (3.20), with y(O)= &a,,+&ia.. For other values of R, away from the 
bifurcation radius, the solution must be calculated numerically from the nonlinear 
equations (3.13). The existence of multiple bifurcation points reflects the existence of 
multi-soliton solutions, as in one dimension, except that here these solutions cannot 
be obtained by  simply joining together single soliton solutions. 

In order to obtain R. in terms of the physical parameters we must eliminate the 
eigenvalue E by using the normalization (3.10). At R = R,  we have (since U = 0 and 
U'= -U'( E ) )  

3 Ng2 
-=- U ' ( e ) R 3 .  
47r 

(3.32) 

This equation, together with (3.246), enables us to express E in terms of Ng2 and the 
parameters of U. By eliminating square roots we find 

p 0 6 i  , U ,  r 7 n -  -U,".=" c / w - r  ~ ' r  " v - /  - \ "  r r W >  , , I L A ~ ~ R - ~ G ~ L I ,  I Y-c f, = Q (?.?3) 

where G = ( 3 N g ' / 4 ~ ) ~ .  If U is a fourth-order polynomial in E then (3.33) is a 
sixth-order polynomial equation in E ,  which is easily solved numerically, given G and 
U, for one of the possible values of p. In general there can he spurious solutions to 
(3.33); however, we have found that there appears to be always only one genuine 
solution. This contrasts with the one-dimensional case for which two solutions exist, 
leading to the shallow and deep bags [ l l ] .  

For the choice (3.7) of U we can always find a solution for large Ng2, corresponding 
to a value of E near 1 .  To leading order in Ng2 we find: 

(3.34) 
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and the corresponding radius is 

+... 3 Ng2 
p2?r(6t+2s) 

R =  (3.35) 

There are two cases for which explicit solutions are possible, these occurring when 
( u")2-16~u) is a perfect square. The two cases are 

(a) s = = 1, for which 

(b) s =f ,  f =+, for which 

3Ng2  ?rp4 
R =- +- 

1 6 G + P 3  2?rp2 6Ng" 
16G 

E =  

(3.36) 

(3.37) 

This latter case is perhaps of some physical interest, since the parameters are close 
to those previously used to model the nucleon (see parameter set (i) below). It should 
be noted that, unlike the case of one dimension, it is not necessarily true that the 
bifurcation radii R , ,  R, . . . are ordered, R,  < R2< R, . . . . That this is possible is clear 
from both (3.36) and (3.37), since for small p, R decreases as 6 increases. 

We give three examples for which we have calculated the values of the bifurcation 
radius; the first two parameter sets have been used by Achtzehnter et a/ [12] and satisfy 
(I =0, implying that s = 3 t  and U"= -3b/c, while the third set is used in [13]. The 
parameter sets and results are: 

(i) g = 9.037, a = 0, b = -105.14 fm-' and c = 1000 for which s = 0.5102 and t = 
0.17007. We find that R I = 2 . 3 1 f m  (6=0.866),  R2=3 .32fm ( ~ = 0 . 2 0 7 )  and R , =  
10.74 fm ( E  = 0.032), where E is the dimensionless eigenvalue rescaled as in (3.6). 

(ii) g = 19.357, a = 0, b = -7482.4fm-' and c =200000 for which s =22.24 and 
t=7.413. We find that R,=1 .267fm ( ~ = 0 . 7 2 5 ) ,  R2=1.258fm (&=0.645) and R,= 
1.277 fm ( E  = 0.579). 

(iii) g = 25, a = 236.13, b = -1  1 614 fm-' and c = 180 000 for which s = 12 and 
f = 0.568 47. We find that R, = 1.75 fm ( E  = 0.89), R, = 1.5897 fm (E  = 0.79) and R, = 

1.5898 fm (E  = 0.74). 
These values of R, give approximately the radius at which the overlapping solitons 

cease to exist as distinct entities although this is determined accurately only from 
precise numerical solutions as found in section 5 .  By comparison it was found in [12], 
where the equations of the model were solved on a crystal lattice, that the corresponding 
values of R were 3 and 2.1 fm for the first two parameter sets above, whereas we 
obtained 2.3 and 1.3 fm respectively. 

It is also possible to have soliton bag solutions satisfying u ( R )  = 0 instead of 
u(R) = 0. For this case p is no longer determined by the simple equation tan p = p ;  
instead there is a transcendental equation involving both n and p which implicitly 
determines R. The linearized solution is found as previously, and bifurcation occurs 
in the same way. 

4. Kink solitons 

Apart from the soliton bag there is another type of solution, which we refer to as the 
kink soliton, which bifurcates from a constant solution different to that for the soliton 
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bag. Such solutions with similar bifurcation behaviour also occur in one-dimensional 
models [14] where they are the familiar kink solutions. The constant solutions are 
given in (3.12) and for the second possibility we have U ' ( u )  = 0, implying U = 1, U = 0 
or u = ( s - 3 f ) / Z s .  The first solution corresponds to the vacuum and can be ignored 
since it does not give rise to solitons. It will be seen that a non-trivial solution bifurcates 
from one of the other solutions, specifically from the larger of 0 and (s-31)/2s, 
corresponding to the central hump in the potential U(u). We find it convenient to 
solve the nonlinear equations keeping E fixed, which means that along a solution 
branch with E held constant the parameter Ng2 will vary. In particular at the bifurcation 
point where U = 0 = U we must have Ng2 = 0 (from (3.10)). Conversely, if we follow a 
solution branch keeping Ng2 fixed (and non-zero) we cannot reach the bifurcation 
point which is therefore unphysical. Numerically, by keeping E fixed we can follow 
the non-trivial bifurcation branch and when Ng2 is non-zero follow the branch for 
varying E and fixed Ng2.  

Suppose that s - 31 < 0 and let us investigate the bifurcation about U = 0 = U = U. 
We may assume 0 s  f 6 s and so U =  0 corresponds to the central (local) maximum of 
U(u). We first determine values of R for which the linearized equations possess 
solutions. The linearized equations for U and U are 

du 2u - + E U = O = - + - - E U  du 
d r  d r  r 

for which the solutions are 
sin er 

U=M- 
r 

sin er cos e r  
U = M ( 7  -7) 

(4.1) 

where p is arbitrary. (Here we have chosen the solution for U which is regular at the 
origin, and then the condition u ( 0 )  = 0 is satisfied.) If we apply the boundary conditions 
U( R) = 0 we find tan ER = ER so that solutions exist only for ER. = p. where tan 0, = p.. 
In this way we have expressed the bifurcation radius, for kink solitons, in terms of 
the given eigenvalue E .  

We still need to solve the linearized U equation. Since U and U have been determined, 
U' - u2 is fixed and we must solve 

d2u  2 d u  
dr2  r d r  
- + - + 2 ( 3 1 -  s)u = u2- u2. 

It is convenient to define w =  r u + r u ' / 2 ~ ~ ,  then 
d2w sin' er --+ c 2 w  = &&Ic2-  
dr2 2e2r 

(4.3) 

(4.4) 

where c2=2(3f -s ) .  The general solution is the sum of a special solution and the 
general solution to the homogeneous equation. In order to find a special solution we 
use Lagrange's method of variation of parameters, outlined for example in Kreyszig 
[15, p 1221. Define 

cos cr sin2 Er 
d r  

(4.5) c2 j: sin ,,:in2 er d r  
g ( r )=  -- 
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thenfand  g satisfyf’sin cr+g’cos cr =O.  These functions are related to the sine and 
cosine integrals defined, for example, in Abramowitz and Stegun [8, ch 51. Explicitly, 

C 
f ( r )  = ~ E Z ( ~ C I ( C ~ ) - - C ~ ( ~ C + ~ E I ~ ) - C C ~ ( ~ C - - ~ E ~ ~ ) )  

g(r)  = -7 (2 Si(cr) -Si((c-ZE)r) - S i ( c + h ) r ) .  
(4.6) 

C 

8~ 

A special solution to (4.4) is 

w = pf( r) sin cr + pg(  r) cos cr. (4.7) 

From this we construct a general solution of (4.3): 

(4.8) 

where U is given in (4.2), and A is a constant. This solution satisfies u’(0) = 0 and we 
must also impose d ( R )  = 0, which determines A: 

U 2  sin cr sin-cr cos cr 
U=--+ 2 2  p r  + d f ( r ) - + I * ’ g ( r ) y  

where R takes one of the values R . = ~ , / E .  This completes the evaluation of the 
linearized solution bifurcating from U = 0 = U = U. 

We have considered only the case s -31 < 0, but expect that for s -31 > 0 the 
bifurcation will take place from U = U = 0, U (s - 31)/2s. In the limit R + 00 we would 
not expect the kink soliton to survive since in three dimensions it cannot retain its 
finite energy. Further study of these solutions is required, in particular it remains to 
calculate the energies of both bag and kink solitons for a given R to determine which 
has the lower energy. 

5. Numerical method and results 

Given the necessary conditions for the existence of a bifurcation and the linearized 
solution at R = R, we can numerically calculate the solution of the full nonlinear 
equations for values of R near R,.  By continuation this solution can be found for 
arbitrary values of R and also for other values of the parameters in the equations. A 
method was described in [4] for obtaining accurate numerical solutions to soliton bag 
models. The system of coupled equations is treated as a two-point boundary value 
system, wiih the normalization condition converted to a difierentiai equation with 
associated boundary conditions. Standard library routines can solve the system to high 
accuracy provided a reasonable initial guess is known. We will solve the system for a 
fixed eigenvalue E, following Koppel and Harvey [IO]. This permits greater simplicity 
since there are fewer equations because the normalization is ignored, and the parameter 
Ng2 is then calculated after the solution is found. Furthermore, it is essential to allow 
i < g 2  io vary in order io numrricaiiy find the kink soiiion bifurcaiing from = 6 = ”, 
as explained in section 4. Once a solution is obtained away from the bifurcation point, 
sufficiently far so that convergence is not affected by the presence of a nearby solution, 
we can revert to the method of [4] and follow the solution branch for constant Ng2, 
while varying R and consequently E.  The numerical method we describe does not 
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require an accurate initial guess, unlike that in [4] and [lo], and can therefore be used 
to generate solutions for arbitrary values of R without prior knowledge of the solution. 

The method is similar to that used to compute periodic solutions arising from a 
Hopf bifurcation, and has been described by Weber [ 161. The difficulty to be overcome 
is to ensure that the method follows the non-trivial branch from the bifurcation point, 
avoiding the constant solution, and this is achieved by imposing an orthogonality 
condition. In general, we are given a constant solution zn and the linearized solution 
y(s), 0s S S  1, valid for some radius R. We seek solutions to (3.13) in the form 

Zb)=b+PY(S)+IL*+(P, s) (5.1) 

where p is a perturbation parameter to be determined and 4, which depends on p as 
well ass ,  is the new unknown. By varying p we follow the solution branch away from' 
the bifurcation point p = 0. The radius is therefore also given in terms of p: 

R ( p j = R + p p ( p j  ( 5 2 j  

where p, which depends on p, is the unknown. To ensure that we avoid the constant 
solution we impose 

r i  

(5.3) 

It is convenient to convert the integral condition to a differential equation with endpoint 
conditions, thereby writing the equations as a two-point boundary value system. Define 
therefore 

i ( s ) = / b ~ ( ~ ) - 9 ( ~ ) d ~  (5.4) 

which satisfies 

with the boundary conditions 

[(O) = {(I) = 0. (5.6) 
From (5.2) we also have 

p=o. (5.7) 
The boundary conditions for 9 follow from (3.1) and the properties of the linearized 
solution y and so we must have 

We therefore have six unknowns, +, p, l, and six equations to solve, these being 
(3.13), (5.5) and (5.7) together with six boundary conditions, namely two in (5.6) and 
four in (5.8). The equations for 9 are found from (3.13) upon substituting for z(s) as 
shown in (5.1). The equations are expressed as a two-point boundary value system of 
order 6 which we solve by standard numerical routines, for some small value of p. 
We found that the initial guess + = 0 = C = p was satisfactory in all cases, leading to 
rapid convergence. The algorithm will converge provided that /.I is sufficiently small 
[161 and, because of the orthogonality condition, (5.4) will provide a non-trivial solution 
branch. From a solution +, p we obtain U, U, U and R from (5.1) and (5.2) and the 
parameter Ng2 is calculated from (3.10). We generate the complete solution branch 
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by continuation in p, i.e. we choose successively larger values of p and solve using 
the previous solution as an initial guess. When R has increased sufficiently we can 
revert to the previous method 14, IO]. 

For the soliton bag y ( s )  is obtained from (3.20) and is given by 

p s 2  s 

p sin ps -- 
S 

(5.9) 

i p sin ps p2 cos ps 
S 

In this expression E is fixed, p is a solution of tan p = p, and R is obtained from (3.24b).  
For the kink solitons of section 4 the method must be modified slightly to take 

account of the different form of the linearized solution. The constant solution is zo= 0 
and u and U are written in the form (5.1): 

(5.10) 

where y1 and y ,  can be identified from (4.2).  However the linearized solution for U 
(4.8) shows that U must be written 

U=P2?3+LL’@3 (5.11) 

where y, can be identified from (4.8). p and t a r e  defined as before in (5.2) and (5.4). 
Again, we choose some small p, having fixed E ,  and solve the two-point boundary 
value system with the initial guess c$ = 0 = p = [. 

In practice, the numerical scheme worked efficiently and we were able to obtain 
accurate solutions for both the soliton bag and kink solitons near the relevant bifurcation 
point. We chose values for s, f and E and calculated solutions bifurcating from each 
of R = R , ,  R 2 .  Figure 1 shows a plot of the field energy E against R for the two 
choices s=8, f = O . 5 ,  E =0.8 and s =  10, t =  1, ~ = 0 . 7 7  with the bifurcation points 
labelled R, and R :  respectively. E and R are dimensionless, scaled as indicated in 
(3.6), and the bifurcation radii are R I  = 3.55 and R ;  = 3.035. The constant solution, 
for each set of parameters, has an energy proportional to R 3  and is shown by a dotted 
curve (when visible) for each case. As f i  is increased from zero, R at first decreases 
with the bag having a higher energy than that of the constant solution. At a minimum 
value R =2.37 (respectively 2.037) the curve has a cusp, following which both R and 
E increase with p. At R = 2.48 (respectively 2.14) the curve crosses that for the constant 
solution and consequently for larger R the soliton bag has lower energy than that of 
the constant solution. In other words, if we begin with a soliton bag solution for large 
R and then decrease R the field configuration of lowest energy changes discontinuously 
from the soliton bag (the nucleon) to a constant (the uniform plasma) at the point 
where the solution branches cross. Figure 2 shows a plot of the solution at R =4.14, 
well away from the bifurcation point, for s = 8 ,  f = 0.5 and 6 = 0.8, and shows U, U and 
(I as functions of r (dimensionless, scaled as in (3 .6 ) ) .  The fact that u ( R )  is not small 
indicates that for the fermion fields there is some overlap with adjoining soliton bags; 
however. the U field almost reaches its vacuum value at r = R. 
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Y 

domain radius R (arbitrary uni ts )  

Figure 1. Energy against R curves for the two parameter sets I = 8, I = 0.5, E = 0.8 (passing 
through the bifurcation point R,)  and s = IO, I =  1,  E =0.77 (passing through R;) .  The 
constant solutions are shown by dotted lines and two bifurcating branches are shown at 
each of R,  and R:. 

radtus (arbitrary umtsj 
Figure 2. The fields U, U and (I as functions of r far rhe soliton bag with s = 5, I = 0.2, 
c=O.8, R=4.14and g=7.77. 

Figure 1 shows that there is another solution branch bifurcating from R,  (and R;) ,  
obtained by choosing negative values for f i .  As p is decreased from zero, R increases 
as shown in figure 1 by the curves which bifurcate from R,  and R: to the right. These 
solutions have energy slightly less than those of the constant solutions, although this 
is not visible in figure 1. These curves also describe soliton bags, but ones which are 
‘inverted’. The solution for R = 6, s = 8 and I = 0.5, with E = 0.74 and g = 30 is shown 
in figure 3 and we describe it as inverted because (+ is close to its vacuum value 1 in 
the interior of the bag, so that its energy resides mainly in a shell on the surface at 
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-0.1 ' I ' I ' 1 ' 1 ' I 
0 L 2 3 I 5 

radius r (arbitrary units) 

Figure 3. An 'invened soliton showing the fields U, v and m as functions of r far s = 8, 
I =0.5, ~=0.74, R = 6  and g =30. 

r = R. This solution has a one-dimensional analogue. We found that as R was increased 
the numerical algorithm failed to converge at approximately R = 8.8 (for g = 30, s = 8, 
t = 0.5). 

The bifurcations shown in figure 1 are repeated at a second value R = R, with two 
branches extending either side of the bifurcation point. These branches also have 
one-dimensional analogues and describe in this case a two-soliton solution. In one 

solitons, reflecting the translational invariance of the one-dimensional model. Here, 
the equations are not invariant under translations in r; however, the 'translated' 
solutions still exist, at least for small R. Figure 4 shows the two-soliton solution at 

dlmL3nsi.n ws can cOns!Tuc! such solutions simply hy joining together two single 

radius r (arbitrary units)  

Figure 4. A double-soliton bifurcating from R,=6.11 showing the fields U. U and (I as 
i u n c ~ i a n s o f r f o r r = 8 , t = 0 . 5 , ~ = 0 . 8 , R = 5 . 9 6 a n d g = 2 2 . 6 6 .  
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R =5.96 on the branch bifurcating to the left, for the parameters s=8, t=0.5 and 
E = 0.8. The solution evidently is composed of a single soliton bag for r s 2.66, surroun- 
ded by an inverted soliton for 2 . 6 6 s  r s 5.96 which tesembles a translated inverted 
soliton as in figure 3. The solution describes two superimposed solitons located at the 
same point, one inside the other. We found numerically that this solution appears not 
to exist for R larger than about 8.5. There is also a branch bifurcating from R = R, 
to the right which is obtained by allowing p to take negative values. Figure 5 provides 
an example of such a solution, for s = 8, t = O S  and E = 0.75 (giving g = 31.8) with 
R = 8. Here, the inverted soliton is enclosed by a soliton bag with the transition between 
the two occurring at r = 6.25. 

radius r (arbitrary units) 

Figure 5. A double-soliton (second branch) bifurcating from R,=6.11  showing the fields 
U, v and (r as functions of I far s = 8, I =0.5, E =0.75, R = 8 and g = 31.8. 

Apart from the soliton bags there are the kink solutions described in section 4. We 
have not systematically determined the energies of these solutions relative to the soliton 
bag, to find which has the lower energy; however, some examples indicate their energy 
is higher. Solutions were calculated in the way described earlier, and an example is 
shown in figure 6 with s = 2, t = 1, E = 0.8, R = 5.64. The bifurcation radius R I  for these 
parameters is 5.617, close to R = 5.64, and so there is only a small variation in the 

to determine other properties of these three-dimensional kink solitons, including the 
range of values of R for which they exist. 

In conclusion, we have demonstrated that the Friedherg-Lee model has a rich set 
of soliton solutions for small R, when the solutions are confined to a sphere of radius 
R. We have obtained these solutions not by continuation from those at R = m, but as 
branches bifurcating from the constant solutions with R being the bifurcation para- 
meter. By numerical calculation we have determined the branches of lowest energy 
and found that at a certain value of R the lowest energy solution changes discon- 
tinuously from a soliton bag to a constant solution. In the mean field approximation 
these solutions are relevant to the quantum theory, and indeed it has been argued by 
Cohen [ 171 that the accuracy of this approximation is greater at high nucleon densities. 

ianbz of U, U, ~ 
is siiia;;, pGiihei iiiimeiica: iiivesiigaiioii is iiqiiiied in 
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-0.021 ' ' ' ' ' ' ' ' ' ' 

0 1 2 5 

radius r (a rb i t ra ry  u n i t s )  

Figure 6. A kink-soliton bifurcating from R,=5.617 showing the fields U, o and (T as 
functions of r for s = 2, 1 = 1, E = 0.8, R = 5.64 and g = 0.39. 

We interpret therefore the discontinuity when solution branches cross as describing a 
transition from the nucleon state to a uniform fermion-scalar field plasma. The methods 
we have used are general and will apply to generalizations of the Friedberg-Lee model 
such as the chromo-dielectric model [l], and can also be used to investigate the case 
when fermions occupy excited levels, corresponding to nucleons at non-zero tem- 
perature. 
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